3.4.25 \(\int \frac {1}{x^2 (a+b x^4+c x^8)} \, dx\) [325]

Optimal. Leaf size=363 \[ -\frac {1}{a x}-\frac {\sqrt [4]{c} \left (1-\frac {b}{\sqrt {b^2-4 a c}}\right ) \tan ^{-1}\left (\frac {\sqrt [4]{2} \sqrt [4]{c} x}{\sqrt [4]{-b-\sqrt {b^2-4 a c}}}\right )}{2\ 2^{3/4} a \sqrt [4]{-b-\sqrt {b^2-4 a c}}}-\frac {\sqrt [4]{c} \left (1+\frac {b}{\sqrt {b^2-4 a c}}\right ) \tan ^{-1}\left (\frac {\sqrt [4]{2} \sqrt [4]{c} x}{\sqrt [4]{-b+\sqrt {b^2-4 a c}}}\right )}{2\ 2^{3/4} a \sqrt [4]{-b+\sqrt {b^2-4 a c}}}+\frac {\sqrt [4]{c} \left (1-\frac {b}{\sqrt {b^2-4 a c}}\right ) \tanh ^{-1}\left (\frac {\sqrt [4]{2} \sqrt [4]{c} x}{\sqrt [4]{-b-\sqrt {b^2-4 a c}}}\right )}{2\ 2^{3/4} a \sqrt [4]{-b-\sqrt {b^2-4 a c}}}+\frac {\sqrt [4]{c} \left (1+\frac {b}{\sqrt {b^2-4 a c}}\right ) \tanh ^{-1}\left (\frac {\sqrt [4]{2} \sqrt [4]{c} x}{\sqrt [4]{-b+\sqrt {b^2-4 a c}}}\right )}{2\ 2^{3/4} a \sqrt [4]{-b+\sqrt {b^2-4 a c}}} \]

[Out]

-1/a/x-1/4*c^(1/4)*arctan(2^(1/4)*c^(1/4)*x/(-b-(-4*a*c+b^2)^(1/2))^(1/4))*(1-b/(-4*a*c+b^2)^(1/2))*2^(1/4)/a/
(-b-(-4*a*c+b^2)^(1/2))^(1/4)+1/4*c^(1/4)*arctanh(2^(1/4)*c^(1/4)*x/(-b-(-4*a*c+b^2)^(1/2))^(1/4))*(1-b/(-4*a*
c+b^2)^(1/2))*2^(1/4)/a/(-b-(-4*a*c+b^2)^(1/2))^(1/4)-1/4*c^(1/4)*arctan(2^(1/4)*c^(1/4)*x/(-b+(-4*a*c+b^2)^(1
/2))^(1/4))*(1+b/(-4*a*c+b^2)^(1/2))*2^(1/4)/a/(-b+(-4*a*c+b^2)^(1/2))^(1/4)+1/4*c^(1/4)*arctanh(2^(1/4)*c^(1/
4)*x/(-b+(-4*a*c+b^2)^(1/2))^(1/4))*(1+b/(-4*a*c+b^2)^(1/2))*2^(1/4)/a/(-b+(-4*a*c+b^2)^(1/2))^(1/4)

________________________________________________________________________________________

Rubi [A]
time = 0.29, antiderivative size = 363, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 5, integrand size = 18, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.278, Rules used = {1382, 1524, 304, 211, 214} \begin {gather*} -\frac {\sqrt [4]{c} \left (1-\frac {b}{\sqrt {b^2-4 a c}}\right ) \text {ArcTan}\left (\frac {\sqrt [4]{2} \sqrt [4]{c} x}{\sqrt [4]{-\sqrt {b^2-4 a c}-b}}\right )}{2\ 2^{3/4} a \sqrt [4]{-\sqrt {b^2-4 a c}-b}}-\frac {\sqrt [4]{c} \left (\frac {b}{\sqrt {b^2-4 a c}}+1\right ) \text {ArcTan}\left (\frac {\sqrt [4]{2} \sqrt [4]{c} x}{\sqrt [4]{\sqrt {b^2-4 a c}-b}}\right )}{2\ 2^{3/4} a \sqrt [4]{\sqrt {b^2-4 a c}-b}}+\frac {\sqrt [4]{c} \left (1-\frac {b}{\sqrt {b^2-4 a c}}\right ) \tanh ^{-1}\left (\frac {\sqrt [4]{2} \sqrt [4]{c} x}{\sqrt [4]{-\sqrt {b^2-4 a c}-b}}\right )}{2\ 2^{3/4} a \sqrt [4]{-\sqrt {b^2-4 a c}-b}}+\frac {\sqrt [4]{c} \left (\frac {b}{\sqrt {b^2-4 a c}}+1\right ) \tanh ^{-1}\left (\frac {\sqrt [4]{2} \sqrt [4]{c} x}{\sqrt [4]{\sqrt {b^2-4 a c}-b}}\right )}{2\ 2^{3/4} a \sqrt [4]{\sqrt {b^2-4 a c}-b}}-\frac {1}{a x} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[1/(x^2*(a + b*x^4 + c*x^8)),x]

[Out]

-(1/(a*x)) - (c^(1/4)*(1 - b/Sqrt[b^2 - 4*a*c])*ArcTan[(2^(1/4)*c^(1/4)*x)/(-b - Sqrt[b^2 - 4*a*c])^(1/4)])/(2
*2^(3/4)*a*(-b - Sqrt[b^2 - 4*a*c])^(1/4)) - (c^(1/4)*(1 + b/Sqrt[b^2 - 4*a*c])*ArcTan[(2^(1/4)*c^(1/4)*x)/(-b
 + Sqrt[b^2 - 4*a*c])^(1/4)])/(2*2^(3/4)*a*(-b + Sqrt[b^2 - 4*a*c])^(1/4)) + (c^(1/4)*(1 - b/Sqrt[b^2 - 4*a*c]
)*ArcTanh[(2^(1/4)*c^(1/4)*x)/(-b - Sqrt[b^2 - 4*a*c])^(1/4)])/(2*2^(3/4)*a*(-b - Sqrt[b^2 - 4*a*c])^(1/4)) +
(c^(1/4)*(1 + b/Sqrt[b^2 - 4*a*c])*ArcTanh[(2^(1/4)*c^(1/4)*x)/(-b + Sqrt[b^2 - 4*a*c])^(1/4)])/(2*2^(3/4)*a*(
-b + Sqrt[b^2 - 4*a*c])^(1/4))

Rule 211

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/Rt[a/b, 2]], x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 214

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x/Rt[-a/b, 2]], x] /; FreeQ[{a, b},
x] && NegQ[a/b]

Rule 304

Int[(x_)^2/((a_) + (b_.)*(x_)^4), x_Symbol] :> With[{r = Numerator[Rt[-a/b, 2]], s = Denominator[Rt[-a/b, 2]]}
, Dist[s/(2*b), Int[1/(r + s*x^2), x], x] - Dist[s/(2*b), Int[1/(r - s*x^2), x], x]] /; FreeQ[{a, b}, x] &&  !
GtQ[a/b, 0]

Rule 1382

Int[((d_.)*(x_))^(m_)*((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(d*x)^(m + 1)*((a +
 b*x^n + c*x^(2*n))^(p + 1)/(a*d*(m + 1))), x] - Dist[1/(a*d^n*(m + 1)), Int[(d*x)^(m + n)*(b*(m + n*(p + 1) +
 1) + c*(m + 2*n*(p + 1) + 1)*x^n)*(a + b*x^n + c*x^(2*n))^p, x], x] /; FreeQ[{a, b, c, d, p}, x] && EqQ[n2, 2
*n] && NeQ[b^2 - 4*a*c, 0] && IGtQ[n, 0] && LtQ[m, -1] && IntegerQ[p]

Rule 1524

Int[(((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^(n_)))/((a_) + (b_.)*(x_)^(n_) + (c_.)*(x_)^(n2_)), x_Symbol] :> Wi
th[{q = Rt[b^2 - 4*a*c, 2]}, Dist[e/2 + (2*c*d - b*e)/(2*q), Int[(f*x)^m/(b/2 - q/2 + c*x^n), x], x] + Dist[e/
2 - (2*c*d - b*e)/(2*q), Int[(f*x)^m/(b/2 + q/2 + c*x^n), x], x]] /; FreeQ[{a, b, c, d, e, f, m}, x] && EqQ[n2
, 2*n] && NeQ[b^2 - 4*a*c, 0] && IGtQ[n, 0]

Rubi steps

\begin {align*} \int \frac {1}{x^2 \left (a+b x^4+c x^8\right )} \, dx &=-\frac {1}{a x}+\frac {\int \frac {x^2 \left (-b-c x^4\right )}{a+b x^4+c x^8} \, dx}{a}\\ &=-\frac {1}{a x}-\frac {\left (c \left (1-\frac {b}{\sqrt {b^2-4 a c}}\right )\right ) \int \frac {x^2}{\frac {b}{2}+\frac {1}{2} \sqrt {b^2-4 a c}+c x^4} \, dx}{2 a}-\frac {\left (c \left (1+\frac {b}{\sqrt {b^2-4 a c}}\right )\right ) \int \frac {x^2}{\frac {b}{2}-\frac {1}{2} \sqrt {b^2-4 a c}+c x^4} \, dx}{2 a}\\ &=-\frac {1}{a x}+\frac {\left (\sqrt {c} \left (1-\frac {b}{\sqrt {b^2-4 a c}}\right )\right ) \int \frac {1}{\sqrt {-b-\sqrt {b^2-4 a c}}-\sqrt {2} \sqrt {c} x^2} \, dx}{2 \sqrt {2} a}-\frac {\left (\sqrt {c} \left (1-\frac {b}{\sqrt {b^2-4 a c}}\right )\right ) \int \frac {1}{\sqrt {-b-\sqrt {b^2-4 a c}}+\sqrt {2} \sqrt {c} x^2} \, dx}{2 \sqrt {2} a}+\frac {\left (\sqrt {c} \left (1+\frac {b}{\sqrt {b^2-4 a c}}\right )\right ) \int \frac {1}{\sqrt {-b+\sqrt {b^2-4 a c}}-\sqrt {2} \sqrt {c} x^2} \, dx}{2 \sqrt {2} a}-\frac {\left (\sqrt {c} \left (1+\frac {b}{\sqrt {b^2-4 a c}}\right )\right ) \int \frac {1}{\sqrt {-b+\sqrt {b^2-4 a c}}+\sqrt {2} \sqrt {c} x^2} \, dx}{2 \sqrt {2} a}\\ &=-\frac {1}{a x}-\frac {\sqrt [4]{c} \left (1-\frac {b}{\sqrt {b^2-4 a c}}\right ) \tan ^{-1}\left (\frac {\sqrt [4]{2} \sqrt [4]{c} x}{\sqrt [4]{-b-\sqrt {b^2-4 a c}}}\right )}{2\ 2^{3/4} a \sqrt [4]{-b-\sqrt {b^2-4 a c}}}-\frac {\sqrt [4]{c} \left (1+\frac {b}{\sqrt {b^2-4 a c}}\right ) \tan ^{-1}\left (\frac {\sqrt [4]{2} \sqrt [4]{c} x}{\sqrt [4]{-b+\sqrt {b^2-4 a c}}}\right )}{2\ 2^{3/4} a \sqrt [4]{-b+\sqrt {b^2-4 a c}}}+\frac {\sqrt [4]{c} \left (1-\frac {b}{\sqrt {b^2-4 a c}}\right ) \tanh ^{-1}\left (\frac {\sqrt [4]{2} \sqrt [4]{c} x}{\sqrt [4]{-b-\sqrt {b^2-4 a c}}}\right )}{2\ 2^{3/4} a \sqrt [4]{-b-\sqrt {b^2-4 a c}}}+\frac {\sqrt [4]{c} \left (1+\frac {b}{\sqrt {b^2-4 a c}}\right ) \tanh ^{-1}\left (\frac {\sqrt [4]{2} \sqrt [4]{c} x}{\sqrt [4]{-b+\sqrt {b^2-4 a c}}}\right )}{2\ 2^{3/4} a \sqrt [4]{-b+\sqrt {b^2-4 a c}}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains higher order function than in optimal. Order 9 vs. order 3 in optimal.
time = 0.03, size = 71, normalized size = 0.20 \begin {gather*} -\frac {1}{a x}-\frac {\text {RootSum}\left [a+b \text {$\#$1}^4+c \text {$\#$1}^8\&,\frac {b \log (x-\text {$\#$1})+c \log (x-\text {$\#$1}) \text {$\#$1}^4}{b \text {$\#$1}+2 c \text {$\#$1}^5}\&\right ]}{4 a} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[1/(x^2*(a + b*x^4 + c*x^8)),x]

[Out]

-(1/(a*x)) - RootSum[a + b*#1^4 + c*#1^8 & , (b*Log[x - #1] + c*Log[x - #1]*#1^4)/(b*#1 + 2*c*#1^5) & ]/(4*a)

________________________________________________________________________________________

Maple [C] Result contains higher order function than in optimal. Order 9 vs. order 3.
time = 0.04, size = 63, normalized size = 0.17

method result size
default \(-\frac {1}{a x}-\frac {\munderset {\textit {\_R} =\RootOf \left (c \,\textit {\_Z}^{8}+\textit {\_Z}^{4} b +a \right )}{\sum }\frac {\left (\textit {\_R}^{6} c +b \,\textit {\_R}^{2}\right ) \ln \left (x -\textit {\_R} \right )}{2 \textit {\_R}^{7} c +\textit {\_R}^{3} b}}{4 a}\) \(63\)
risch \(-\frac {1}{a x}+\frac {\left (\munderset {\textit {\_R} =\RootOf \left (\left (256 a^{9} c^{4}-256 b^{2} c^{3} a^{8}+96 b^{4} c^{2} a^{7}-16 b^{6} c \,a^{6}+b^{8} a^{5}\right ) \textit {\_Z}^{8}+\left (80 a^{4} b \,c^{4}-120 a^{3} b^{3} c^{3}+61 a^{2} b^{5} c^{2}-13 a \,b^{7} c +b^{9}\right ) \textit {\_Z}^{4}+c^{5}\right )}{\sum }\textit {\_R} \ln \left (\left (\left (1152 a^{9} c^{4}-1184 b^{2} c^{3} a^{8}+456 b^{4} c^{2} a^{7}-78 b^{6} c \,a^{6}+5 b^{8} a^{5}\right ) \textit {\_R}^{8}+\left (332 a^{4} b \,c^{4}-487 a^{3} b^{3} c^{3}+245 a^{2} b^{5} c^{2}-52 a \,b^{7} c +4 b^{9}\right ) \textit {\_R}^{4}+4 c^{5}\right ) x +\left (64 a^{8} c^{4}-112 a^{7} b^{2} c^{3}+60 a^{6} b^{4} c^{2}-13 a^{5} b^{6} c +a^{4} b^{8}\right ) \textit {\_R}^{7}+\left (4 a^{3} b \,c^{4}-a^{2} b^{3} c^{3}\right ) \textit {\_R}^{3}\right )\right )}{4}\) \(305\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/x^2/(c*x^8+b*x^4+a),x,method=_RETURNVERBOSE)

[Out]

-1/a/x-1/4/a*sum((_R^6*c+_R^2*b)/(2*_R^7*c+_R^3*b)*ln(x-_R),_R=RootOf(_Z^8*c+_Z^4*b+a))

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^2/(c*x^8+b*x^4+a),x, algorithm="maxima")

[Out]

-integrate((c*x^6 + b*x^2)/(c*x^8 + b*x^4 + a), x)/a - 1/(a*x)

________________________________________________________________________________________

Fricas [B] Leaf count of result is larger than twice the leaf count of optimal. 5375 vs. \(2 (281) = 562\).
time = 1.09, size = 5375, normalized size = 14.81 \begin {gather*} \text {Too large to display} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^2/(c*x^8+b*x^4+a),x, algorithm="fricas")

[Out]

-1/4*(4*a*x*sqrt(sqrt(1/2)*sqrt(-(b^5 - 5*a*b^3*c + 5*a^2*b*c^2 - (a^5*b^4 - 8*a^6*b^2*c + 16*a^7*c^2)*sqrt((b
^8 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b^2*c^3 + a^4*c^4)/(a^10*b^6 - 12*a^11*b^4*c + 48*a^12*b^2*c^2 - 64*a^
13*c^3)))/(a^5*b^4 - 8*a^6*b^2*c + 16*a^7*c^2)))*arctan(-1/2*((a^5*b^9*c^4 - 11*a^6*b^7*c^5 + 41*a^7*b^5*c^6 -
 56*a^8*b^3*c^7 + 16*a^9*b*c^8)*x*sqrt((b^8 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b^2*c^3 + a^4*c^4)/(a^10*b^6
- 12*a^11*b^4*c + 48*a^12*b^2*c^2 - 64*a^13*c^3)) + (b^10*c^4 - 10*a*b^8*c^5 + 35*a^2*b^6*c^6 - 50*a^3*b^4*c^7
 + 25*a^4*b^2*c^8 - 4*a^5*c^9)*x - (b^6 - 7*a*b^4*c + 13*a^2*b^2*c^2 - 4*a^3*c^3 + (a^5*b^5 - 8*a^6*b^3*c + 16
*a^7*b*c^2)*sqrt((b^8 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b^2*c^3 + a^4*c^4)/(a^10*b^6 - 12*a^11*b^4*c + 48*a
^12*b^2*c^2 - 64*a^13*c^3)))*sqrt((b^8*c^8 - 6*a*b^6*c^9 + 11*a^2*b^4*c^10 - 6*a^3*b^2*c^11 + a^4*c^12)*x^2 -
1/2*sqrt(1/2)*(b^13*c^5 - 13*a*b^11*c^6 + 65*a^2*b^9*c^7 - 155*a^3*b^7*c^8 + 175*a^4*b^5*c^9 - 79*a^5*b^3*c^10
 + 12*a^6*b*c^11 + (a^5*b^12*c^5 - 16*a^6*b^10*c^6 + 100*a^7*b^8*c^7 - 305*a^8*b^6*c^8 + 460*a^9*b^4*c^9 - 304
*a^10*b^2*c^10 + 64*a^11*c^11)*sqrt((b^8 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b^2*c^3 + a^4*c^4)/(a^10*b^6 - 1
2*a^11*b^4*c + 48*a^12*b^2*c^2 - 64*a^13*c^3)))*sqrt(-(b^5 - 5*a*b^3*c + 5*a^2*b*c^2 - (a^5*b^4 - 8*a^6*b^2*c
+ 16*a^7*c^2)*sqrt((b^8 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b^2*c^3 + a^4*c^4)/(a^10*b^6 - 12*a^11*b^4*c + 48
*a^12*b^2*c^2 - 64*a^13*c^3)))/(a^5*b^4 - 8*a^6*b^2*c + 16*a^7*c^2))))*sqrt(sqrt(1/2)*sqrt(-(b^5 - 5*a*b^3*c +
 5*a^2*b*c^2 - (a^5*b^4 - 8*a^6*b^2*c + 16*a^7*c^2)*sqrt((b^8 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b^2*c^3 + a
^4*c^4)/(a^10*b^6 - 12*a^11*b^4*c + 48*a^12*b^2*c^2 - 64*a^13*c^3)))/(a^5*b^4 - 8*a^6*b^2*c + 16*a^7*c^2)))/(b
^8*c^5 - 6*a*b^6*c^6 + 11*a^2*b^4*c^7 - 6*a^3*b^2*c^8 + a^4*c^9)) - 4*a*x*sqrt(sqrt(1/2)*sqrt(-(b^5 - 5*a*b^3*
c + 5*a^2*b*c^2 + (a^5*b^4 - 8*a^6*b^2*c + 16*a^7*c^2)*sqrt((b^8 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b^2*c^3
+ a^4*c^4)/(a^10*b^6 - 12*a^11*b^4*c + 48*a^12*b^2*c^2 - 64*a^13*c^3)))/(a^5*b^4 - 8*a^6*b^2*c + 16*a^7*c^2)))
*arctan(-1/2*((b^6 - 7*a*b^4*c + 13*a^2*b^2*c^2 - 4*a^3*c^3 - (a^5*b^5 - 8*a^6*b^3*c + 16*a^7*b*c^2)*sqrt((b^8
 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b^2*c^3 + a^4*c^4)/(a^10*b^6 - 12*a^11*b^4*c + 48*a^12*b^2*c^2 - 64*a^13
*c^3)))*sqrt((b^8*c^8 - 6*a*b^6*c^9 + 11*a^2*b^4*c^10 - 6*a^3*b^2*c^11 + a^4*c^12)*x^2 - 1/2*sqrt(1/2)*(b^13*c
^5 - 13*a*b^11*c^6 + 65*a^2*b^9*c^7 - 155*a^3*b^7*c^8 + 175*a^4*b^5*c^9 - 79*a^5*b^3*c^10 + 12*a^6*b*c^11 - (a
^5*b^12*c^5 - 16*a^6*b^10*c^6 + 100*a^7*b^8*c^7 - 305*a^8*b^6*c^8 + 460*a^9*b^4*c^9 - 304*a^10*b^2*c^10 + 64*a
^11*c^11)*sqrt((b^8 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b^2*c^3 + a^4*c^4)/(a^10*b^6 - 12*a^11*b^4*c + 48*a^1
2*b^2*c^2 - 64*a^13*c^3)))*sqrt(-(b^5 - 5*a*b^3*c + 5*a^2*b*c^2 + (a^5*b^4 - 8*a^6*b^2*c + 16*a^7*c^2)*sqrt((b
^8 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b^2*c^3 + a^4*c^4)/(a^10*b^6 - 12*a^11*b^4*c + 48*a^12*b^2*c^2 - 64*a^
13*c^3)))/(a^5*b^4 - 8*a^6*b^2*c + 16*a^7*c^2)))*sqrt(sqrt(1/2)*sqrt(-(b^5 - 5*a*b^3*c + 5*a^2*b*c^2 + (a^5*b^
4 - 8*a^6*b^2*c + 16*a^7*c^2)*sqrt((b^8 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b^2*c^3 + a^4*c^4)/(a^10*b^6 - 12
*a^11*b^4*c + 48*a^12*b^2*c^2 - 64*a^13*c^3)))/(a^5*b^4 - 8*a^6*b^2*c + 16*a^7*c^2))) + ((a^5*b^9*c^4 - 11*a^6
*b^7*c^5 + 41*a^7*b^5*c^6 - 56*a^8*b^3*c^7 + 16*a^9*b*c^8)*x*sqrt((b^8 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b^
2*c^3 + a^4*c^4)/(a^10*b^6 - 12*a^11*b^4*c + 48*a^12*b^2*c^2 - 64*a^13*c^3)) - (b^10*c^4 - 10*a*b^8*c^5 + 35*a
^2*b^6*c^6 - 50*a^3*b^4*c^7 + 25*a^4*b^2*c^8 - 4*a^5*c^9)*x)*sqrt(sqrt(1/2)*sqrt(-(b^5 - 5*a*b^3*c + 5*a^2*b*c
^2 + (a^5*b^4 - 8*a^6*b^2*c + 16*a^7*c^2)*sqrt((b^8 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b^2*c^3 + a^4*c^4)/(a
^10*b^6 - 12*a^11*b^4*c + 48*a^12*b^2*c^2 - 64*a^13*c^3)))/(a^5*b^4 - 8*a^6*b^2*c + 16*a^7*c^2))))/(b^8*c^5 -
6*a*b^6*c^6 + 11*a^2*b^4*c^7 - 6*a^3*b^2*c^8 + a^4*c^9)) - a*x*sqrt(sqrt(1/2)*sqrt(-(b^5 - 5*a*b^3*c + 5*a^2*b
*c^2 + (a^5*b^4 - 8*a^6*b^2*c + 16*a^7*c^2)*sqrt((b^8 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b^2*c^3 + a^4*c^4)/
(a^10*b^6 - 12*a^11*b^4*c + 48*a^12*b^2*c^2 - 64*a^13*c^3)))/(a^5*b^4 - 8*a^6*b^2*c + 16*a^7*c^2)))*log(1/2*sq
rt(1/2)*(b^11 - 13*a*b^9*c + 63*a^2*b^7*c^2 - 138*a^3*b^5*c^3 + 128*a^4*b^3*c^4 - 32*a^5*b*c^5 - (a^5*b^10 - 1
6*a^6*b^8*c + 98*a^7*b^6*c^2 - 280*a^8*b^4*c^3 + 352*a^9*b^2*c^4 - 128*a^10*c^5)*sqrt((b^8 - 6*a*b^6*c + 11*a^
2*b^4*c^2 - 6*a^3*b^2*c^3 + a^4*c^4)/(a^10*b^6 - 12*a^11*b^4*c + 48*a^12*b^2*c^2 - 64*a^13*c^3)))*sqrt(sqrt(1/
2)*sqrt(-(b^5 - 5*a*b^3*c + 5*a^2*b*c^2 + (a^5*b^4 - 8*a^6*b^2*c + 16*a^7*c^2)*sqrt((b^8 - 6*a*b^6*c + 11*a^2*
b^4*c^2 - 6*a^3*b^2*c^3 + a^4*c^4)/(a^10*b^6 - 12*a^11*b^4*c + 48*a^12*b^2*c^2 - 64*a^13*c^3)))/(a^5*b^4 - 8*a
^6*b^2*c + 16*a^7*c^2)))*sqrt(-(b^5 - 5*a*b^3*c + 5*a^2*b*c^2 + (a^5*b^4 - 8*a^6*b^2*c + 16*a^7*c^2)*sqrt((b^8
 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b^2*c^3 + a^4*c^4)/(a^10*b^6 - 12*a^11*b^4*c + 48*a^12*b^2*c^2 - 64*a^13
*c^3)))/(a^5*b^4 - 8*a^6*b^2*c + 16*a^7*c^2)) +...

________________________________________________________________________________________

Sympy [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x**2/(c*x**8+b*x**4+a),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^2/(c*x^8+b*x^4+a),x, algorithm="giac")

[Out]

integrate(1/((c*x^8 + b*x^4 + a)*x^2), x)

________________________________________________________________________________________

Mupad [B]
time = 2.81, size = 2500, normalized size = 6.89 \begin {gather*} \text {Too large to display} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(x^2*(a + b*x^4 + c*x^8)),x)

[Out]

2*atan((((-(b^9 + b^4*(-(4*a*c - b^2)^5)^(1/2) + 80*a^4*b*c^4 + 61*a^2*b^5*c^2 - 120*a^3*b^3*c^3 + a^2*c^2*(-(
4*a*c - b^2)^5)^(1/2) - 13*a*b^7*c - 3*a*b^2*c*(-(4*a*c - b^2)^5)^(1/2))/(512*(a^5*b^8 + 256*a^9*c^4 - 16*a^6*
b^6*c + 96*a^7*b^4*c^2 - 256*a^8*b^2*c^3)))^(3/4)*(4096*a^15*c^8 - x*(-(b^9 + b^4*(-(4*a*c - b^2)^5)^(1/2) + 8
0*a^4*b*c^4 + 61*a^2*b^5*c^2 - 120*a^3*b^3*c^3 + a^2*c^2*(-(4*a*c - b^2)^5)^(1/2) - 13*a*b^7*c - 3*a*b^2*c*(-(
4*a*c - b^2)^5)^(1/2))/(512*(a^5*b^8 + 256*a^9*c^4 - 16*a^6*b^6*c + 96*a^7*b^4*c^2 - 256*a^8*b^2*c^3)))^(1/4)*
(32768*a^16*c^8 + 1024*a^12*b^8*c^4 - 12288*a^13*b^6*c^5 + 51200*a^14*b^4*c^6 - 81920*a^15*b^2*c^7)*1i + 256*a
^11*b^8*c^4 - 2816*a^12*b^6*c^5 + 10496*a^13*b^4*c^6 - 14336*a^14*b^2*c^7)*1i + 4*a^11*b*c^8*x)*(-(b^9 + b^4*(
-(4*a*c - b^2)^5)^(1/2) + 80*a^4*b*c^4 + 61*a^2*b^5*c^2 - 120*a^3*b^3*c^3 + a^2*c^2*(-(4*a*c - b^2)^5)^(1/2) -
 13*a*b^7*c - 3*a*b^2*c*(-(4*a*c - b^2)^5)^(1/2))/(512*(a^5*b^8 + 256*a^9*c^4 - 16*a^6*b^6*c + 96*a^7*b^4*c^2
- 256*a^8*b^2*c^3)))^(1/4) - ((-(b^9 + b^4*(-(4*a*c - b^2)^5)^(1/2) + 80*a^4*b*c^4 + 61*a^2*b^5*c^2 - 120*a^3*
b^3*c^3 + a^2*c^2*(-(4*a*c - b^2)^5)^(1/2) - 13*a*b^7*c - 3*a*b^2*c*(-(4*a*c - b^2)^5)^(1/2))/(512*(a^5*b^8 +
256*a^9*c^4 - 16*a^6*b^6*c + 96*a^7*b^4*c^2 - 256*a^8*b^2*c^3)))^(3/4)*(4096*a^15*c^8 + x*(-(b^9 + b^4*(-(4*a*
c - b^2)^5)^(1/2) + 80*a^4*b*c^4 + 61*a^2*b^5*c^2 - 120*a^3*b^3*c^3 + a^2*c^2*(-(4*a*c - b^2)^5)^(1/2) - 13*a*
b^7*c - 3*a*b^2*c*(-(4*a*c - b^2)^5)^(1/2))/(512*(a^5*b^8 + 256*a^9*c^4 - 16*a^6*b^6*c + 96*a^7*b^4*c^2 - 256*
a^8*b^2*c^3)))^(1/4)*(32768*a^16*c^8 + 1024*a^12*b^8*c^4 - 12288*a^13*b^6*c^5 + 51200*a^14*b^4*c^6 - 81920*a^1
5*b^2*c^7)*1i + 256*a^11*b^8*c^4 - 2816*a^12*b^6*c^5 + 10496*a^13*b^4*c^6 - 14336*a^14*b^2*c^7)*1i - 4*a^11*b*
c^8*x)*(-(b^9 + b^4*(-(4*a*c - b^2)^5)^(1/2) + 80*a^4*b*c^4 + 61*a^2*b^5*c^2 - 120*a^3*b^3*c^3 + a^2*c^2*(-(4*
a*c - b^2)^5)^(1/2) - 13*a*b^7*c - 3*a*b^2*c*(-(4*a*c - b^2)^5)^(1/2))/(512*(a^5*b^8 + 256*a^9*c^4 - 16*a^6*b^
6*c + 96*a^7*b^4*c^2 - 256*a^8*b^2*c^3)))^(1/4))/(((-(b^9 + b^4*(-(4*a*c - b^2)^5)^(1/2) + 80*a^4*b*c^4 + 61*a
^2*b^5*c^2 - 120*a^3*b^3*c^3 + a^2*c^2*(-(4*a*c - b^2)^5)^(1/2) - 13*a*b^7*c - 3*a*b^2*c*(-(4*a*c - b^2)^5)^(1
/2))/(512*(a^5*b^8 + 256*a^9*c^4 - 16*a^6*b^6*c + 96*a^7*b^4*c^2 - 256*a^8*b^2*c^3)))^(3/4)*(4096*a^15*c^8 - x
*(-(b^9 + b^4*(-(4*a*c - b^2)^5)^(1/2) + 80*a^4*b*c^4 + 61*a^2*b^5*c^2 - 120*a^3*b^3*c^3 + a^2*c^2*(-(4*a*c -
b^2)^5)^(1/2) - 13*a*b^7*c - 3*a*b^2*c*(-(4*a*c - b^2)^5)^(1/2))/(512*(a^5*b^8 + 256*a^9*c^4 - 16*a^6*b^6*c +
96*a^7*b^4*c^2 - 256*a^8*b^2*c^3)))^(1/4)*(32768*a^16*c^8 + 1024*a^12*b^8*c^4 - 12288*a^13*b^6*c^5 + 51200*a^1
4*b^4*c^6 - 81920*a^15*b^2*c^7)*1i + 256*a^11*b^8*c^4 - 2816*a^12*b^6*c^5 + 10496*a^13*b^4*c^6 - 14336*a^14*b^
2*c^7)*1i + 4*a^11*b*c^8*x)*(-(b^9 + b^4*(-(4*a*c - b^2)^5)^(1/2) + 80*a^4*b*c^4 + 61*a^2*b^5*c^2 - 120*a^3*b^
3*c^3 + a^2*c^2*(-(4*a*c - b^2)^5)^(1/2) - 13*a*b^7*c - 3*a*b^2*c*(-(4*a*c - b^2)^5)^(1/2))/(512*(a^5*b^8 + 25
6*a^9*c^4 - 16*a^6*b^6*c + 96*a^7*b^4*c^2 - 256*a^8*b^2*c^3)))^(1/4)*1i + ((-(b^9 + b^4*(-(4*a*c - b^2)^5)^(1/
2) + 80*a^4*b*c^4 + 61*a^2*b^5*c^2 - 120*a^3*b^3*c^3 + a^2*c^2*(-(4*a*c - b^2)^5)^(1/2) - 13*a*b^7*c - 3*a*b^2
*c*(-(4*a*c - b^2)^5)^(1/2))/(512*(a^5*b^8 + 256*a^9*c^4 - 16*a^6*b^6*c + 96*a^7*b^4*c^2 - 256*a^8*b^2*c^3)))^
(3/4)*(4096*a^15*c^8 + x*(-(b^9 + b^4*(-(4*a*c - b^2)^5)^(1/2) + 80*a^4*b*c^4 + 61*a^2*b^5*c^2 - 120*a^3*b^3*c
^3 + a^2*c^2*(-(4*a*c - b^2)^5)^(1/2) - 13*a*b^7*c - 3*a*b^2*c*(-(4*a*c - b^2)^5)^(1/2))/(512*(a^5*b^8 + 256*a
^9*c^4 - 16*a^6*b^6*c + 96*a^7*b^4*c^2 - 256*a^8*b^2*c^3)))^(1/4)*(32768*a^16*c^8 + 1024*a^12*b^8*c^4 - 12288*
a^13*b^6*c^5 + 51200*a^14*b^4*c^6 - 81920*a^15*b^2*c^7)*1i + 256*a^11*b^8*c^4 - 2816*a^12*b^6*c^5 + 10496*a^13
*b^4*c^6 - 14336*a^14*b^2*c^7)*1i - 4*a^11*b*c^8*x)*(-(b^9 + b^4*(-(4*a*c - b^2)^5)^(1/2) + 80*a^4*b*c^4 + 61*
a^2*b^5*c^2 - 120*a^3*b^3*c^3 + a^2*c^2*(-(4*a*c - b^2)^5)^(1/2) - 13*a*b^7*c - 3*a*b^2*c*(-(4*a*c - b^2)^5)^(
1/2))/(512*(a^5*b^8 + 256*a^9*c^4 - 16*a^6*b^6*c + 96*a^7*b^4*c^2 - 256*a^8*b^2*c^3)))^(1/4)*1i))*(-(b^9 + b^4
*(-(4*a*c - b^2)^5)^(1/2) + 80*a^4*b*c^4 + 61*a^2*b^5*c^2 - 120*a^3*b^3*c^3 + a^2*c^2*(-(4*a*c - b^2)^5)^(1/2)
 - 13*a*b^7*c - 3*a*b^2*c*(-(4*a*c - b^2)^5)^(1/2))/(512*(a^5*b^8 + 256*a^9*c^4 - 16*a^6*b^6*c + 96*a^7*b^4*c^
2 - 256*a^8*b^2*c^3)))^(1/4) - atan((((-(b^9 - b^4*(-(4*a*c - b^2)^5)^(1/2) + 80*a^4*b*c^4 + 61*a^2*b^5*c^2 -
120*a^3*b^3*c^3 - a^2*c^2*(-(4*a*c - b^2)^5)^(1/2) - 13*a*b^7*c + 3*a*b^2*c*(-(4*a*c - b^2)^5)^(1/2))/(512*(a^
5*b^8 + 256*a^9*c^4 - 16*a^6*b^6*c + 96*a^7*b^4*c^2 - 256*a^8*b^2*c^3)))^(3/4)*(4096*a^15*c^8 + x*(-(b^9 - b^4
*(-(4*a*c - b^2)^5)^(1/2) + 80*a^4*b*c^4 + 61*a^2*b^5*c^2 - 120*a^3*b^3*c^3 - a^2*c^2*(-(4*a*c - b^2)^5)^(1/2)
 - 13*a*b^7*c + 3*a*b^2*c*(-(4*a*c - b^2)^5)^(1/2))/(512*(a^5*b^8 + 256*a^9*c^4 - 16*a^6*b^6*c + 96*a^7*b^4*c^
2 - 256*a^8*b^2*c^3)))^(1/4)*(32768*a^16*c^8 + 1024*a^12*b^8*c^4 - 12288*a^13*b^6*c^5 + 51200*a^14*b^4*c^6 - 8
1920*a^15*b^2*c^7) + 256*a^11*b^8*c^4 - 2816*a^...

________________________________________________________________________________________